
图的结构通常表示为:G(V,E),其中,E是图G中()。
A.顶点
B.顶点的集合
C.边
D.边的集合

A.顶点
B.顶点的集合
C.边
D.边的集合
第2题
不相交的子集A和B=V-A,并且这两个子集具有下列性质:
(a)A中任何两个顶点在G中都不是相互邻接的;(b)B中任何两个顶点在G中都不是相互邻接的。例如,图8-34就是二部图。对V(G)的一个划分可能是A=(0,3,4,6)和B=(1,2,5,7).
(1)试编写一个算法,判断图G是否是二部图。如果图G是二部图,则你的算法应当把项点划分成为具有上述性质的两个互不相交的子集A和B。证明:当用邻接表表示图G时,这个算法的复杂度可以做到O(n+e)。其中n是图G的顶点个数,e是边数。
(2)证明:任何-棵树都是二部图
(3)证明:当且仅当图G不包含奇数条边的回路时.它是二部图。
第3题
在以下假设下,重写Djkstra算法:
(1)用邻接表表示有向带权图G,其中每个边结点有3个域:邻接顶点vertex,边上的权值length和边链表的链接指针link
(2)用集合T=V(G)-S代替S(已找到最短路径的顶点集合),利用链表来表示集合T。
试比较新算法与原来的算法,计算时间是快了还是慢了,给出定量的比较。
第4题
问题描述:给定一个赋权无向图G=(V,E),每个顶点都有权值w(v).如果
,且对任意(u,V)∈E有u∈U或v∈U,就称U为图G的一个顶点覆盖.G的最小权顶点覆盖是指G中所含顶点权之和最小的顶点覆盖.
算法设计:对于给定的无向图G,设计一个优先队列式分支限界法,计算G的最小权顶点覆盖.
数据输入:由文件input.txt给出输入数据.第1行有2个正整数n和m,表示给定的图G有n个顶点和m条边,顶点编号为1,2,...,n.第2行有n个正整数表示n个顶点的权.接下来的m行中,每行有2个正整数u和v,表示图G的一条边(u,v).
结果输出:将计算的最小权顶点覆盖的顶点权值和以及最优解输出到文件output.txt.文件的第1行是最小权顶点覆盖顶点权之和;第2行是最优解xi(1≤i≤n),xi=0表示顶点i不在最小权顶点覆盖中,xi=1表示顶点i在最小权顶点覆盖中.
第5题
设有一个带权有向图G=(V,E),w是G的一个顶点,w的偏心距定义为:max(从u到w的最短路径长度其中的路径长度指的是路径上各边权值的和,将G中偏心距最小的顶点称为G的中心,试设计一个函数返回带权有向图的中心(如有多个中心,可任取其中之
参数表中的引用型参数biasdist返回最小偏心距的值,函数返回该中心的顶点号。
第6题
设为简单有向图G的邻接矩阵,证明A3的对角线元素表示经过结点v1的“三角形”的个数,即以v为一个结点的G的子图k3的个数.
第7题
行深度优先搜索,得到的顶点序列是()。
A、a,b,e,c,d,f
B、a,c,f,e,b,d
C、a,e,b,c,f,d
D、a,e,d,f,c,b
第8题
试证明图5-16所示之系统可以产生单边带信号.图中,信号g(t)之频谱G(w)受限于之间,
.设v(t)之频谱为V(w),写出V(w)表示式,并画出图形.
第10题
设G=<V,E>为无向图,命题均有
,则G中存在哈密顿通路”的真值为()。
第11题
称d(u,v)为图G<A,E>=中结点u,v间的距离:
又称max{d(u,v)|u,vV}为图G的直径,试求如图9.15所示的图的直径.