
[主观题]
证明:设A,B皆为nxn实对称矩阵,且互相交换,则它们有公共的特征向量作为欧氏空间Rn的标准正交基。

查看答案
第2题
(1)设A、C分别为阶实对称矩阵,B是
实矩阵,
是正定矩阵(实)。证明:
等号当且仅当B=0时成立.
(2)设是n阶实矩阵,
求证:
第5题
设A是nxn对称正定矩阵,并设v(i),i=0,1,...,n-1为线性无关的一组向量。令p(k),k=0,1,...,n-1,如下生成:
证明:方向p(k),k=0,1,...,n-1,是A共轭的。上述过程称为共轭化,它从一组线性无关方向出发,产生一组A共轭方向。
第7题
设A是实对称矩阵,且A2=0,证明A∞0。
(提示:注意A的对角线上的元)